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Improved efficiency of in situ 
protein analysis by proximity 
ligation using UnFold probes
Axel Klaesson1, Karin Grannas1, Tonge Ebai2, Johan Heldin  1, Björn Koos3, Mattias Leino1, 
Doroteya Raykova1, Johan Oelrich2, Linda Arngården1, Ola Söderberg  1 & Ulf Landegren  2

We have redesigned probes for in situ proximity ligation assay (PLA), resulting in more efficient 
localized detection of target proteins. In situ PLA depends on recognition of target proteins by pairs of 
antibody-oligonucleotide conjugates (PLA probes), which jointly give rise to DNA circles that template 
localized rolling circle amplification reactions. The requirement for dual recognition of the target 
proteins improves selectivity by ignoring any cross-reactivity not shared by the antibodies, and it allows 
detection of protein-protein interactions and post-translational modifications. We herein describe 
an improved design of the PLA probes –UnFold probes – where all elements required for formation of 
circular DNA strands are incorporated in the probes. Premature interactions between the UnFold probes 
are prevented by including an enzymatic “unfolding” step in the detection reactions. This allows DNA 
circles to form by pairs of reagents only after excess reagents have been removed. We demonstrate 
the performance of UnFold probes for detection of protein-protein interactions and post-translational 
modifications in fixed cells and tissues, revealing considerably more efficient signal generation. 
We also apply the UnFold probes to detect IL-6 in solution phase after capture on solid supports, 
demonstrating increased sensitivity over both normal sandwich enzyme-linked immunosorbent assays 
and conventional PLA assays.

It is well established that measurement of proteins in solution can be greatly improved if detection depends on 
dual recognition by antibodies in the form of sandwich immunoassays rather than binding by single antibodies1. 
Such assays are now routinely used for high-performance solution-phase protein detection in research and the 
clinic. By contrast, 75 years after the immunochemistry method was first described2, most in situ protein detec-
tion assays still rely on the selectivity of target binding by individual antibody preparations, often leading to 
unspecific detection of proteins other than the intended ones3,4. The in situ proximity ligation assay (PLA), first 
published a decade ago, represents an alternative strategy where in situ target detection depends on binding by 
pairs of oligonucleotide-conjugated antibodies, giving rise to circular DNA strands that are then amplified by 
rolling circle amplification (RCA)5. In this way, the assay achieves improved specificity by virtue of the dual recog-
nition and enhanced signal strength by localized amplification via RCA6. In situ PLA has also become popular as 
a means to identify interacting proteins in cells and tissues7–9 or to apply pairs of antibodies in order to simultane-
ously detect both proteins and their post-translational modifications through e.g. phosphorylation, glycosylation 
or palmitoylation10–12. Localized detection of both individual proteins and signaling protein complexes serves to 
portray the heterogeneous nature of individual cells, a matter of particular relevance in malignancy with clonally 
distinct tumor cells intermixed with stromal tissue.

In situ PLA uses oligonucleotide-modified antibodies, referred to as PLA probes or proximity probes, to vis-
ualize target proteins. Upon proximal binding by pairs of PLA probes, the conjugated oligonucleotides tem-
plate ligation of secondarily added oligonucleotide pairs to generate DNA circles. Replication of the DNA circles 
through RCA is then primed by one of the PLA probes, resulting in prominent signals at the sites of antibody 
binding (Fig. 1a). Each RCA product consists of a single DNA strand with several hundred complements of the 
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DNA circle, collapsed into a micrometer-sized DNA bundle that is suitable for detection and digital enumeration 
by microscopy after hybridization with fluorophore- or enzyme-labeled detection oligonucleotides13.

In situ PLA has also been applied to improve sensitivity, specificity, and target range in other methods for 
localized protein detection, for example, western blotting14, flow cytometry15,16, and sandwich enzyme-linked 
immunosorbent assay (ELISA)17,18.

We describe herein a modified design for PLA probes in the form of so-called UnFold probes that incorporate 
all elements required for the production of the circular amplification templates. We evaluate this new design in 
several different applications and demonstrate improved efficiency of detection compared to conventional in situ 
PLA, both in situ and in microtiter wells, with preserved signal-to-noise ratios.

Results
UnFold probe design. In the UnFold design of probes for in situ PLA, one of the antibodies carries a cir-
cle-forming oligonucleotide, while the other antibody is conjugated to an oligonucleotide that can template 
the ligation reaction required to create this DNA circle, avoiding the need for adding separate oligonucleotides 
(Fig. 1). The circle-forming oligonucleotide (circle probe) has a hairpin-loop structure with cleavable DNA uracil 
(U) residues to release the 5′ end of the loop, while the template probe contains a hairpin with several U residues 
in the distal 3′ portion of a DNA hairpin attached to an antibody (Fig. 1b). When the two DNA-conjugated 
antibody probes are first added to a sample, their DNA strands are unable to interact, since the hairpin in the 
template probe shields the segment complementary to the circle probe. Each antibody, therefore, must recognize 
its target independently to remain bound after washes19. After unbound probes have been removed, a subsequent 
enzymatic “unfolding” step allows the pairs of probes to form DNA circles by templated ligation. The unfolding 
step is achieved by removing U bases in the oligonucleotides using the enzyme uracil-DNA glycosylase (UNG), 
and then cleaving the sugar-phosphate backbone of the abasic residues using endonuclease IV (EndoIV). For the 
circle probe, this has the effect of liberating the 5′ end of the circle-forming DNA strand, which remains hybrid-
ized to a DNA strand covalently attached to its antibody. Meanwhile, the 5′ segment of the hairpin-modified 
template probe is now available for hybridization to the free 5′ and 3′ ends of the circle forming DNA strand, since 
the complementary 3′ segment containing U residues has been degraded. Thereby the ends of the circle-forming 
DNA strands are joined by a ligase, giving rise to circular DNA strands that remain hybridized to the PLA probes 
(Fig. 1ii). The addition of phi29 DNA polymerase then executes RCA, primed by the PLA probes, and the local-
ized RCA products can be visualized using fluorophore-labeled detection oligonucleotides.

Comparison of conventional in situ PLA probes and UnFold probes for analysis of cells and tis-
sue sections. Secondary antibodies were conjugated to oligonucleotides and then purified and validated to 
create the conventional and UnFold in situ PLA probes (Supplementary Figs S1 and S2). To evaluate the UnFold 
probes and compare them to the conventional in situ PLA probes, we used previously validated combinations of 

Figure 1. Schematic illustration of in situ PLA using conventional and UnFold probes. (a) Conventional 
in situ PLA. (b) In situ PLA using UnFold probes. (i) After pairs of primary antibodies have bound a pair of 
interacting proteins (red and green) followed by washes, secondary conventional or UnFold in situ PLA probes 
are added, followed after an incubation by renewed washes. (ii) In the conventional design under (a) two more 
oligonucleotides are then added that can form a DNA circle. Using the UnFold design in (b) the probe carrying 
a hairpin-loop oligonucleotide is cleaved at the U residues, liberating a free 5′ end capable of being ligated to 
the 3′ end of the same DNA strand. Meanwhile, the U residues in the hairpin DNA strand of the other UnFold 
probe are cleaved presenting a single-stranded template for the enzymatic joining of the ends of the strand on 
the first UnFold probe. (iii) A DNA ligase is added to form DNA circles in the two variants of in situ PLA. (iv) 
Finally, phi29 DNA polymerase is added to initiate RCA primed by oligonucleotides on one of the antibodies, 
and fluorescent oligonucleotides are used to visualize the RCA products.
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primary antibodies targeting the adherens junction protein E-cadherin with its interaction partner β-catenin20, 
and phosphorylated forms of the PDGF receptor β (PDGFR-β)10.

We used a dilution series of DNA-conjugated antibodies for the two probe designs to achieve optimal 
signal-to-noise ratios (Supplementary Fig. S3). Signals representing E-cadherin/β-catenin interactions in HaCat 
cells were compared to background signals when no primary antibodies had been added. For conventional in 
situ PLA, we tested the probes at 66, 200, 600 and 1800 ng/ml. Based on this analysis we selected 600 ng/ml of 
the antibody-DNA conjugates to investigate receptor signaling in cells, and 1800 ng/ml in tissue sections, which 
commonly require a higher probe concentration. For UnFold probes, the concentrations tested were 20, 66, 200 
and 600 ng/ml and the optimal signal-to-noise was obtained at 66 ng/ml. At higher probe concentrations, the 
RCA products become so abundant that they start to coalesce and can no longer be counted as individual signals. 
This results in an apparent reduction of signals, while the amount of unspecific background signals is increased 
(Fig. 2). The effect is a lower signal-to-noise ratio at higher concentrations, as also observed in conventional in 
situ PLA21. We also investigated unspecific signals by omitting either of the primary antibodies or by excluding 
the PLA probes (Fig. 3). When omitting one of the primary antibodies the amount of signals from cross-reactivity 
and/or nonspecific binding was low. Without the presence of both PLA probes, minimal staining was detected. 
Omitting any of the enzymes removed all signals from the cells, except in the case of endoIV, in which case some 
specific signals were still observed in its absence (Fig. 4). The treatment with UNG removes uracil bases and cre-
ates abasic sites. The abasic sites are fragile and prone to spontaneous breakage also in the absence of endoIV22. 
Nonetheless, addition of endoIV dramatically increases the strand breaks necessary for production of circular 
RCA templates and contributes to efficient signal generation.

To evaluate the performance of UnFold probes in formalin-fixed paraffin-embedded (FFPE) material, we ana-
lyzed interactions between E-cadherin and β-catenin in skin tissue sections. E-cadherin is known to be prevalent 
in epithelial cells that are present in the epidermis but absent in the dermis23. After trying different concentrations 
of the antibody-DNA conjugate, we found that 1800 ng/ml for conventional in situ PLA and 66 ng/ml for UnFold 
probes resulted in signals specifically clustering in the epidermis (Fig. 5). The number of signals in the epidermis 
was greater for UnFold, compared to conventional in situ PLA, even though only 1/27 of conjugate concentration 
was used.

We next compared the efficiency of detecting phosphorylated proteins by using either conventional in 
situ PLA probes or UnFold probes. Immortalized fibroblasts, BJ hTert cells, were starved or stimulated with 
platelet-derived growth factor-BB (PDGF-BB). Both designs for pairs of secondary antibody-oligonucleotide 
conjugates detected increased phosphorylation of the PDGFR-β (Fig. 6a) in stimulated cells using anti-PDGFR 
and anti-pan phosphorylation (pY100) as primary antibodies. UnFold probes revealed a greater number of phos-
phorylation events than conventional in situ PLA at both probe concentrations tested (66 and 600 ng/ml, Fig. 6b). 
Signals at the higher probe concentrations coalesced and hence individual RCA products could not be accurately 
resolved, preventing digital counting of the signals21. UnFold probes (66 ng/ml) were also more efficient than 
conventional in situ PLA reagents (1800 ng/ml) in detecting phosphorylation of AKT and ERK1/2 in response 
to stimulation with PDGF, downstream in the signaling cascade (Supplementary Fig. S4). The protein phospho-
rylations described above were validated by Western blot (Supplementary Figs S5 and S6). In addition to these 
assays, the specific phosphorylation of tyrosine 1068 (pY1068) of the epidermal growth factor receptor (EGFR) 
was quantified upon stimulation with EGF in HCT116 colorectal carcinoma cells (Supplementary Fig. S7). In line 
with results from the previous experiments, UnFold probes (66 ng/ml) yielded an about four fold higher ratio of 
signals comparing EGF-stimulated versus unstimulated cells than the conventional in situ PLA. The phosphoryl-
ation of tyrosine residue 542 in Src homology region 2 domain-containing phosphatase-2 (Shp2) was measured in 
the same cell line (Supplementary Fig. S7). Here, the results show a clear difference of the UnFold design in terms 
of signal in comparison to the conventional in situ PLA.

Analysis of proteins in solution phase. PLA has previously been shown to increase the sensitivity of 
detection in sandwich assays for protein detection in solution phase, where one antibody is used for target capture 
from liquid samples, followed after washes by detection with two DNA-conjugated antibodies that undergo PLA 
reactions24,25. These assays allow interrogation of larger sample volumes, containing proportionally more target 
molecules, and they allow washes to remove excess reagents. This is in contrast to homogenous PLA or proximity 
extension reactions (PEA) that depend on small reaction volumes and background reduction by dilution but no 
washes before ligation or polymerization. Moreover, the requirement for target binding by sets of three rather 
than two antibodies to generate an amplifiable DNA signal reduces the risk for cross-reactive detection of irrel-
evant proteins26,27. The DNA products that form may be amplified by PCR or alternatively, using the in situ PLA 
mechanism, by RCA for isothermal amplification17,18.

The increased efficiency of signal generation that we observed in cells and tissues using UnFold probes com-
pared to conventional in situ PLA reagents motivated a comparison of the two approaches also for detection of 
proteins in solution after capturing on solid supports. We immobilized antibodies in microtiter wells to capture 
IL-6, and the trapped antigens were then detected by an enzyme-conjugated antibody reagent for regular ELISA, 
or via in situ PLA using pairs of either conventional or UnFold probes. In line with our in situ studies, we found 
that the UnFold design achieved a lower limit of detection (LOD) compared to the conventional in situ PLA 
design, which in turn exhibited improved performance over ELISA (Table 2, Fig. 7). Further experiments where 
antigen was diluted in 10% or 100% cell lysates, similarly demonstrated the improved performance of the UnFold 
probes over conventional in situ PLA probes and sandwich ELISA (Supplementary Fig. S8).

Discussion
Immunohistochemistry (IHC) is an established technique in research and routine pathology. A growing interest 
in imaging the distribution of single or large sets of proteins in cells and tissues is still mostly served by variants of 
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the IHC or immunofluorescence techniques where binding by single labeled antibodies is monitored. With this 
publication, there are now three alternative technologies where target binding by pairs of antibodies is required 
to elicit a signal via localized amplification reactions. The in situ PLA technique first presented in 20065, the 
proximity hybridization chain reaction (ProxHCR)28, and with this paper now also UnFold in situ PLA reac-
tions. All these three techniques share the advantage that cross-reactive detection of irrelevant proteins is less 
likely since only targets recognized by pairs of antibodies can give rise to detection signals, greatly reducing 

Figure 2. Visualization of E-cadherin/β-catenin interactions in HaCat cells. (a) Images of cells stained with 
primary antibodies against E-cadherin and β-catenin and secondary conventional or UnFold in situ PLA probes 
recording E-cadherin/β-catenin interactions (Pos). As a background control, primary antibodies were omitted 
(Neg). The RCA products were labeled with Cy3 (red dots in the merged images) and the nuclei were stained 
with Hoechst 33342. Scale bar (white) = 50 µm. (b) Quantification of signals per cell comparing in situ PLA 
and UnFold at different probe concentrations. Experiments were performed three times. Three images per 
experimental condition were acquired. Error bars represent SEM.
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risks of nonspecific background29,30. The three techniques are also all useful to investigate interactions or close 
proximity between pairs of proteins where each protein is bound by one antibody, and the same principle also 
holds for detection of posttranslational modifications, where one antibody is devoted to detection of the protein 
and another recognizes the modification, as illustrated herein for protein phosphorylations. Among the three, 
the ProxHCR reaction has the advantage over the other two dual-binding assays that no enzymes are required, 
which reduces cost and simplifies automation using staining workstations due to a simple assay format. However, 
staining tends to be weaker than for in situ PLA, and signals do not lend themselves for digital enumeration 
because of the more even distribution that is more similar to regular IHC or immunofluorescence. The UnFold 
technique differs from the earlier version of the in situ PLA technique in that all DNA elements required for the 
amplified detection are included in the reagents. The oligonucleotides conjugated to pairs of antibodies are pre-
vented from hybridizing to each other prematurely by hairpin structures, which are removed only after antibodies 
have independently bound their protein targets, followed by washes. After excess reagents have been removed by 
washes, the UnFold probes are treated (unfolded) so that an oligonucleotide on one of the antibodies can template 

Figure 3. Image panel of HaCat cells showing detection of β-catenin/ E-cadherin interactions along with 
several technical controls. In the top row images, both of the primary antibodies and the PLA probes were 
included, revealing the characteristic β-catenin/ E-cadherin interaction stain. For the remaining rows in the 
panel, one or more of the primary or secondary antibodies were excluded. All signals were stained with Cy3 
(Red in merge images and in grayscale) and the nuclei were stained with Hoechst 33342 (Blue). Scale bar 
(white) = 50 μm.
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circularization of an oligonucleotide hybridized to an oligonucleotide conjugated to another antibody, having 
bound in proximity. Compared to the conventional in situ PLA probe design we find that UnFold in situ PLA 
probes improve the efficiency of signal generation for in situ PLA as an effect of the inclusion of the circularization 
oligonucleotide on one of PLA probes, and the single ligation reaction required to form DNA circles. This serves 
to lower the risk of formation of linear ligation products that would fail to be detected rather than the desired 
DNA circles capable of templating RCA.

In situ PLA reactions can be performed in multiplex8, and the more efficient UnFold design should also lend 
itself for the construction of multiplex detection reactions, a matter of increasing importance for analyses of 
cells and tissues. A number of approaches are available to read out multiplex molecular detection reactions by 

Figure 4. Image panel of HaCat cells showing detection of β-catenin/E-cadherin interaction or different 
technical controls, omitting enzymes. For the top image row, both of the primary antibodies and the PLA probes 
were included, revealing the characteristic staining pattern of β-catenin/E-cadherin interactions. The remaining 
rows in the panel show the effect of removing enzymes or detection oligonucleotides as indicated in the figure. 
All signals were stained with Cy3 (Red in merge images or in grayscale) and the nuclei were stained with 
Hoechst 33342 (Blue). Scale bar (white) = 50 μm.
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microscopy in situ or flow cytometry in situ, through methods such as sequential bleaching31, in situ sequenc-
ing32,33, sequential hybridization34 or, by mass cytometry using lanthanide labeled probes34–36.

The improved efficiency of detection using UnFold probes demonstrated here means that also weakly 
expressed proteins can be detected. If a digital readout is desired for abundant proteins then lower concentrations 
of the UnFold probes may be used. Alternatively, the assay can be modified so that only a given fraction of all 
RCA products are detected as previously described21. It is also possible to use shorter incubations for the RCA 
reaction to achieve a more homogenous staining to be evaluated according to its intensity rather than by counting 
individual reaction products.

In conclusion, UnFold probes improve the efficiency of in situ PLA and they can thereby enhance the sensitiv-
ity of detection of immobilized target proteins in situ and in microtiter wells.

Materials and Methods
Cell culture. The keratinocyte cell line HaCaT and the immortalized fibroblast cell line BJ hTert, both of 
human origin, were grown at 37 °C and 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 
with 10% fetal bovine serum (FBS), 50 units/ml penicillin, 50 μg/ml streptomycin and 1 mM L-glutamine (all 
from Thermo Scientific).

Oligonucleotide design. Sequences with suitable characteristics were designed and evaluated in silico using 
the NUPACK software package (www.nupack.org)37. All aldehyde-modified oligonucleotides were purchased 
from Trilink Biotechnologies and other oligonucleotides were acquired from Integrated DNA Technologies 
(Table 1).

Conjugation of secondary antibodies. Donkey anti-rabbit, donkey anti-mouse and donkey anti-goat 
antibodies (Jackson ImmunoResearch), 350 µg each, were concentrated using the Amicon Ultra 10 K centrifugal 
filter unit (Merck Millipore) according to the manufacturer’s instructions to a concentration >3 mg/ml in PBS. 
S-HyNic Crosslinker (Solulink) was dissolved in dimethyl sulfoxide (DMSO) (Sigma Aldrich) to 20 mM and the 
crosslinker and antibodies were mixed with a 25-fold molar excess of crosslinker over antibodies. The mix was 

Figure 5. Visualization of the interaction of β-catenin and E-cadherin in skin tissue. This stitched tile scan 
of stained skin tissue shows the specificity of the β-catenin and E-cadherin interaction (red) in the epidermis. 
The autofluorescence in the FITC channel (green), together with the nuclear Hoechst staining (blue) allows 
visualization of the different structures in the tissues. Each tissue section was stained with conventional 
or UnFold in situ PLA probes at a concentration of 1800 ng/ml and 66 ng/ml, respectively. Scale bar 
(white) = 100 µm. This experiment was performed once.

http://www.nupack.org
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incubated protected from light with gentle rotation at room temperature for 2.5 hours. After activation of the 
antibodies, the buffer was exchanged for 150 mM NaCl and 100 mM NaHPO4 pH 6.0 using prewashed Zeba Spin 
Desalting Columns 7 K MWCO (Thermo Scientific). The antibodies were then mixed with aldehyde-modified 
oligonucleotides (Table 1) at an antibody:oligonucleotide molar ratio of 1:3. Aniline was added to a final concen-
tration of 10 mM to catalyze the conjugation reaction. The antibody-oligonucleotide mix was incubated protected 
from light with gentle rotation at room temperature for 2 hours. Immediately after the incubation, the buffer was 
exchanged to PBS using a prewashed Zeba Spin Desalting Column 7 K MWCO. The conjugated antibodies were 
purified from remaining unconjugated antibodies and oligonucleotides by ÄKTA Pure HPLC (GE Healthcare) 

Figure 6. Visualization of phosphorylation of PDGFR-β in BJ hTert cells. (a) Images comparing serum-starved 
BJ hTert cells (−) versus cells treated with PDGF-BB for 45 min on ice (+) by detecting phosphorylation levels 
of the PDGFR-β (anti-PDGFR and anti-pan phosphorylation (pY100) antibodies). The RCA products were 
labeled with Cy3 (red dots in the merged images) and the nuclei were stained with Hoechst 33342. Scale bar 
(white) = 50 µm. (b) Quantification of signals comparing conventional and UnFold in situ PLA at different 
probe concentrations. The experiment was performed four times. Five images were collected per experimental 
condition. Error bars represent SEM.
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using Superdex 200 10/300 column (GE Healthcare). The collected fractions from the HPLC purification were 
validated by electrophoresis. Briefly, the conjugates were mixed with Novex TBE-Urea Sample buffer (Life 
Technologies) and separated on a Novex TBE-Urea Gel 10%, 15 wells (Life Technologies) at 180 V for 50 min. 
DNA was visualized using SYBR Gold Nucleic Acid Gel Stain (Life Technologies) and protein using Coomassie 
stain (Bio-Rad, Hercules, USA). The SYBR Gold staining was visualized with Bio-Rad Gel-Doc XR (Bio-Rad) and 
the Coomassie staining using an Odyssey scanner (Li-Cor Bioscience) at a wavelength of 700 nm. Concentrations 
of the conjugates were determined using the Dot-it Spot-it Total Protein Assay (http://dot-it-spot-it.com, Maple 
Stone AB)38 according to the manufacturer’s instructions with the sample diluted in PBS containing 1% SDS and a 
known AB reference donkey anti-rabbit/ donkey anti-mouse dilution series for comparison. Dot-it Spot-it mem-
branes were scanned using Epson Perfection V600 Photo (Epson) and analyzed using ImageJ and Excel. About 
1–15% of the secondary antibody is recovered as conjugated probes.

IL-6 UnFold in situ PLA Conventional in situ PLA ELISA

LODmean (pM) 0.022 0.082 1.803

LLOQmean (pM) 0.104 0.465 5.861

R2
mean 0.996 0.996 0.997

Intra assay variationmean (%) 11.2 11.7 9.49

Inter assay variationmean (%) 30.0 11.6 10.6

Table 2. Analytical characteristics. All values are averages of four separate experiments.

Figure 7. Detection of recombinant IL-6 from solution phase using UnFold probes. Microtiter wells were 
precoated with capture antibodies, which served to bind the antigen, IL-6. Captured target proteins were then 
detected using a standard sandwich enzyme-linked immunosorbent assay (ELISA), or via conventional or 
UnFold in situ PLA probes. In each case, the signals were recorded by an HRP-mediated colorimetric reaction. 
After addition of the HRP substrate, TMB, the absorbance was recorded by spectrophotometry. The experiment 
was performed four times and one representative graph is shown. Error bars = Standard deviation of duplicates, 
dashed lines indicate the experimental LODs.

Design Oligonucleotides Sequence

Conventional in situ PLA

Probe 1 5′ aldehyde or azide – AAAAAAAAAATATGACAGAACTAGACACTCTT

Probe 2 5′ aldehyde or azide – AAAAAAAAAAGACGCTAATAGTTAAGACGCTT 
– 3 × 2′ O-methyl RNA uracil

Circularization oligonucleotide 1 5′ phosphate – GTTCTGTCATATTTAAGCGTCTTAA

Circularization oligonucleotide 2 5′ phosphate – CTATTAGCGTCCAGTGAATGCGAGTCCGTCTAAGAGA
GTAGTAC-AGCAGCCGTCAAGAGTGTCTA

UnFold in situ PLA
Probe 1

5′ aldehyde or azide – AAAAATATGACAGAACTAGACACTCUUUCTATT
AGCGTCCAGTGA-ATGCGAGTCCGTCTGAAAGAGTGTCTAGTTCTG
TCATATTTAAGCGTCTTAA

Probe 2 5′ aldehyde or azide – AAAAAAGACGCTAATAGTTAAGACGCTTUUUA
AAAAAAAGCGUC-UUAACUAUUAGCGUC

All Detection oligonucleotide 5′ Cy3 or HRP– CAGTGAATGCGAGTCCGTCT – 3 × 2′ O-methyl RNA 
uracil

Table 1. Oligonucleotide sequences.

http://dot-it-spot-it.com
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Conjugation of primary antibodies. Polyclonal anti-human IL-6 antibodies (AF-206-NA, R&D Systems) 
were covalently coupled to oligonucleotides. 10 µg of antibodies per conjugated PLA probe at a concentra-
tion of 2 µg/µl in PBS was activated by addition of a 33.3-fold molar excess of dibenzyl cyclooctyne NHS ester 
(DBCO-NHS ester; Jena Bioscience), freshly dissolved in DMSO (Sigma-Aldrich) and incubated at room tem-
perature for 30 min. Thereafter, the activated antibodies were purified from DBCO-NHS using the 7 K MWCO 
Zeba Spin columns (Thermo Scientific) that had been equilibrated with PBS. The activated antibodies were then 
split into two aliqotes, mixed with a 2.5-fold molar excess of the respective azide-modified oligonucleotides, and 
incubated overnight at 4 °C.

Application of probes in situ. HaCat cells were seeded at a density of approximately 120 000 cells/cm2 and 
grown for 1–2 days in 8-well Lab-Tek II Chamber Slides (Sigma-Aldrich) until 70–80% confluent. Approximately 
47 000 cells/cm2 of BJ hTert cells were seeded in chamber slides and grown overnight. The BJ hTert cells were 
serum-starved in DMEM overnight. The cells were subsequently incubated with or without 50 ng/ml PDGF-BB 
in DMEM for 1 hour on ice. Alternatively, to investigate phosphorylation of downstream signaling proteins the 
cells were incubated for 15 min at 37 °C. The cells were washed twice in ice-cold PBS before fixation with 3.7% 
formaldehyde on ice for 15 min, followed by two consecutive washes in PBS and dehydration in 70% EtOH before 
being stored at −20 °C until use.

Approximately 15 000 HCT116 cells per well were seeded in a 96 well plate (NUNC) and left to adhere for 
48 hours. Subsequently, cells were serum starved for 5 hours in DMEM. Then the cells were incubated with 100 
ng/ml EGF for 3 min at 37 °C. Directly after stimulation cells were fixed with 3.7% formaldehyde on ice for 30 min, 
followed by two consecutive washes with PBS. Cells were used directly.

Anonymized FFPE skin sections on glass slides were provided by Olink Bioscience AB and their use has been 
approved by the local ethical standards committee (Uppsala 2005:347). Tissue sections were treated according to 
standard methods. The slides were deparaffinized in 100% xylene (three consecutive incubations for 5 min, 5 min 
and 1 min). Next, tissues were rehydrated in decreasing ethanol concentrations, starting from 99% ethanol twice 
for 3 min, 95% ethanol twice for 5 and 3 min, respectively, and finally, 70% ethanol for 3 min. The slides were sub-
sequently washed in water three times and subjected to antigen retrieval. The latter was performed in a pressure 
cooker, where slides were boiled in 1 × Dako Target retrieval solution (Agilent) at 2 atm pressure and 125 °C for 
4 min and then at 90 °C for 3 min. The tissue sections were then allowed to gradually cool down to room temper-
ature and washed in water. Thereafter, the samples were stored in PBS until use.

The thawed cells were rehydrated in PBS for 5 min at room temperature and permeabilized with 0.2% 
TritonX100 in PBS for 5 min at room temperature, followed by washes in PBS. For the EGFR and Shp2 assays, the 
cells were permeabilized with 0.1% TritonX100 in PBS for 5 min at room temperature and then the phospho-sites 
were made available by incubation with 1% SDS in PBS for 5 min, followed by extensive washes with PBS.

The cells and tissue sections were incubated with 50% Odyssey blocking buffer (Li-Cor Bioscience) in 
1 × Tris-buffered saline (TBS) for 30 min at 37 °C. Rabbit anti-β-catenin antibodies (#7199, Santa Cruz 
Biotechnology) were applied at a dilution of 1:200 diluted in blocking buffer, mouse anti-E-cadherin antibodies 
(#610182, BD biosciences) at 1:100, rabbit anti-PDGFR-β antibodies (#3169, Cell Signaling Technology) at 1:100, 
mouse anti-pY100 antibodies (#9411, Cell Signaling Technology) at 1:200, mouse anti-Akt antibodies (#2920, 
Cell Signaling Technology) at 1:100, rabbit anti-pAkt antibodies (#4060, Cell Signaling Technology) at 1:50, 
mouse anti- ERK1/2antibodies (#4696, Cell Signaling Technology) at 1:100 and rabbit anti-p ERK1/2antibodies 
(#4370, Cell Signaling Technology) at 1:100. We used goat anti-EGFR antibodies (AF231, RnD Systems) at 1:10 
000, rabbit antibodies directed against pY1068 EGFR (#3777, Cell Signaling Technology) at 1:1000, goat anti Shp2 
(PA5–17956, Thermo Fisher) at 1:1000, and rabbit anti pY542 Shp2 (ab62322, Abcam) at 1:5000. Paired combi-
nations of rabbit and mouse, and goat and rabbit primary antibodies were incubated with samples overnight at 
4 °C in a humidified chamber. After incubation, the slides were washed 3 times for 3 min each in TBS with 0.05% 
Tween 20 (TBS-T), before addition of secondary probes.

Conventional probes for in situ PLA or UnFold probes were diluted in blocking buffer to 20, 66, 200, 600 or 
1800 ng/ml, and incubated on the slides for 60 min at 37 °C. After incubation, the slides were washed 3 times for 
3 min each in TBS-T.

UnFold probes were digested by addition of 0.05 U/µl UNG and 0.025 U/µl endoIV in digestion buffer (20 mM 
Tris-HCl (pH 7.6), 30 mM NaCl, 1 mM EDTA, 100 mM KCl and 1 nM dithiothreitol (DTT)) supplemented with 
0.25 mg/ml BSA (Sigma-Aldrich) for 45 min at 37 °C. The slides were then washed twice in TBS-T for 3 min. 
Circularization oligonucleotides for the two probe designs were ligated using 0.02 U/µl T4 DNA ligase (Thermo 
Scientific) in T4 DNA ligase buffer supplemented with 0.25 mg/ml BSA for 30 min at 37 °C, thereafter the slides 
were washed twice for 3 min in TBS-T. RCA was performed by addition of 0.5 U/µl phi29 polymerase (Thermo 
scientific) in phi29 polymerase buffer (Thermo Scientific) supplemented with 7.5 ng/ml PolyA (Sigma-Aldrich), 
0.25 mM dNTP and 0.25 mg/ml BSA for 60 min at 37 °C, followed by two 3 min washes in TBS-T. The RCA prod-
ucts and the nuclei were visualized by incubating the slides with 0.025 µM fluorescence-labeled detection oligo-
nucleotide and 40 µg/ml Hoechst 33342 in PBS supplemented with 2.5 µg/ml salmon sperm DNA and 0.25 mg/ml 
BSA for 30 min at 37 °C. Prior to mounting with Vectashield mounting medium (Vector Laboratories), the slides 
were washed twice for 10 min in 1xTBS and once for 15 min in 0.2 × TBS.

Western blot. The stimulations were done essentially as described in Heldin et al., 201739. Briefly, BJ hTert 
cells were transferred to a cell culture plate (50 000 cells/cm2) and let to adhere and spread overnight, thereafter 
the cells were starved overnight and stimulated with 50 ng/ml PDGF-BB at 37 °C or on ice as indicated. The 
stimulation on ice was preceded by a 10 min preincubation on ice. Following the specified treatments, cells were 
briefly washed in PBS on ice and lysed in 2 × NuPAGE™ LDS Sample Buffer supplemented with 100 mM DTT 
(hereafter referred to as sample buffer). Samples were denatured at 95 °C for 5 min before being subjected to a 
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Bis-Tris polyacrylamide gel electrophoresis and subsequently transferred to a PVDF membrane using the Iblot2. 
Chameleon Duo (Li-core) was used as a molecular size marker. Membranes were blocked with Odyssey blocking 
buffer (LI-COR Biosciences, diluted 1:3 in TBS) for 2 hours before being incubated overnight at 4 °C with primary 
antibodies (rabbit anti-PDGFR-β (#3169, Cell Signaling Technology) at 1:1000, mouse anti-pY751- PDGFR-β 
(#3166, Cell Signaling Technology) at 1:1000, Rabbit anti-pY857- PDGFR-β (#3170, Cell Signaling Technology) 
at 1:1000, mouse anti-AKT (#2920, Cell Signaling Technology) at 1:500, rabbit anti-pAKT (#4060, Cell Signaling 
Technology) at 1:500, β-actin (sc-47778, Santa Cruz Biotechnology) at 1:1000 and rabbit anti-p ERK1/2 (#9101, 
Cell Signaling Technology) at 1:1000). Membranes were washed 4 × 10 min in 0.05% Tween-20 in TBS and incu-
bated with the appropriate fluorescently tagged secondary antibodies (Alexa 680 and IRDye800) diluted in block-
ing buffer. The membranes were finally washed in 0.05% Tween-20 in TBS for 4 × 10 min and finally with TBS for 
10 min. All membranes were scanned using an Odyssey Scanner (LI-COR Biosciences).

Unfold versus conventional in situ PLA probes compared to ELISA for solution-phase protein 
detection. Wells in a 96-well microtiter plate (R&D Systems) were coated with 800 ng per well of human 
IL-6 antibodies (AF-206-NA, R&D Systems), diluted in coating buffer (1.5 g Na2CO3, 2.93 g NaHCO3, pH 9.6) at 
4 °C overnight. Thereafter, the wells were blocked with 1% BSA in 1× PBS for 60 min at RT. The plates were then 
washed in washing buffer (1× PBS, 0.5% BSA and 0.05% Tween 20), and the same washes were used after each 
step in the assay.

Recombinant human IL-6 protein (206-IL-010, R&D Systems) was diluted in PLA buffer to concentrations 
ranging from 500 pM to 0 pM to make the standard curve and was added to the wells, followed by washes. 
The conventional in situ PLA probes and UnFold probes were incubated in PLA buffer (0.1% BSA (New 
England Bio-labs), 0.05% Tween (Sigma-Aldrich), 0.1 µg/µl salmon sperm DNA (Invitrogen), 100 nM goat IgG 
(Sigma-Aldrich), 1 mM D-biotin (Invitrogen), 5 mM EDTA, 1× PBS) for 5 to 10 min to block unspecific binding 
before combining the pairs of probes.

Conventional in situ PLA or UnFold probes at a final concentration of 150 ng/ml were added to each well, 
followed by incubation at room temperature for 60 min. After two washes, 50 µl of 0.05 U/µl UNG, 0.01 U/µl 
EndoIV in 1× EndoIV buffer (NEB) was added in reactions involving UnFold probes, followed by incubation for 
30 min at 37 °C and then washes.

Thereafter, a ligation mix (0.25 mg/ml BSA, 1× T4 DNA ligase buffer without DTT, 1 mM ATP, 2.5 mM NaCl, 
125 nM of the two circularization oligonucleotides (for conventional in situ PLA), 0.02 U/μl T4 DNA ligase (New 
England Bio Labs),) were added to each well and incubated for 30 min at 37 °C, followed by washes. Afterwards, 
the RCA mix (0.25 mg/ml BSA, 1× Phi29 polymerase buffer (Fermentas), 0.25 mM dNTPs (Fermentas), 0.05 U/
µl Phi29 DNA polymerase (Fermentas) was added to each well, followed by incubation at 37 °C for 90 min and 
subsequent washes. A hybridization solution containing 50 pM horseradish peroxidase-labeled detection oligo-
nucleotides in 20% formamide and 2× SSC was added to the wells and incubated for 30 min at 37 °C, followed 
by washes. Finally, 50 μl of the horseradish peroxidase-substrate tetramethyl benzidine (TMB; Sigma-Aldrich), 
equilibrated at RT, was added to each well and incubated for 10 min. 50 µl of 1 M H2SO4 was added to each well 
to stop the reaction and the colorimetric changes were recorded at 450 nm within 30 min, using an ELISA plate 
reader.

ELISA for IL-6 (D6050, R&D systems) was performed according to the manufacturer’s instructions. The anti-
gen dilution series was extended for the ELISA to allow comparison to the UnFold and in situ PLA assays.

Imaging. For all experimental conditions, at least three images were acquired. The microscope used was a 
Zeiss Imager Z2 controlled by the Zen 2 (blue edition) software. All images were taken with a 40×/1.4 oil objec-
tive and a Hamamatsu C11440 camera. The samples were excited by an HXP 120 V light source (50% light inten-
sity) and imaged using filter cubes sets from Zeiss (number 49(#488049-9901-000), 38 HE (#489038-9901-000) 
and 43 HE (#489043-9901-000)) suitable for the fluorescence wavelengths of DAPI, FITC and Cy3. Exposure 
times were 40 ms for DAPI, 510 ms for FITC and 1.5 s for Cy3 during image acquisition.

Image analysis. Image analysis and quantification were done using the CellProfiler software ver-
sion 2.1.1, made available by the Broad Institute Imaging Platform40. A pipeline for signal quantifi-
cation with slight modifications between the assays and experiments was created and built up by the 
following modules: IdentifyPrimaryObjects, IdentifySecondaryObjects, EnhanceOrSuppressFeatures, MaskObjects 
and ExportToSpreadsheet. First, IdentifyPrimaryObjects was used to identify any nucleus between 40 and 180 
pixels and above a manually set threshold in the Hoechst stained images. Thereafter, seeding with the nucleus 
objects the IdentifySecondaryObjects module was used to expanding from the nucleus with 45 pixels or 80 pixels 
for HaCats and BJ hTert cells, respectively, to define the cells. The Cy3 images with the signals were first filtered 
to remove background larger than 12 pixels in diameter with a white tophat filter using the enhance speck-
les feature in the EnhanceOrSuppressFeatures module. The filtered images were thereafter run through another 
IdentifyPrimaryObjects module to detect signals, by setting a size limit to 1–12 pixels and a manual threshold 
of 0.025. Any signal outside of the defined cells was removed using the MaskObjects module to avoid any sig-
nals from cells not counted and therefore not included in the analysis. The data on the number of counted cells 
and masked signals per image were thereafter exported to a CSV file with the ExportToSpreadsheet module for 
calculations.

Microtiter plate readout and analysis. The absorbance data were recorded using a Safire II microtiter 
plate reader, and the optical densities (ODs) at 450 nm, which is the optimal wavelength for measuring the prod-
ucts of the peroxidase reaction, were exported and further analyzed with Microsoft Excel software and ImageJ. 
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The data were fitted using a four-parametric logistic regression model41 (1) in ImageJ (Curve Fitter > Rodbard). 
The assay system gives a sigmoidal curve and we used the 4 parametric logistic regression model because it pro-
vided the best curve fit. The model takes into account the minimum and maximum values, the point of inflection, 
and the slope of the curve. Thereafter, the model was used to estimate the concentrations for the limits of detec-
tion (LOD) and lower limits of quantification (LLOQ) by calculating the concentrations corresponding to the 
fitted curves at OD values corresponding to average background +3 standard deviations for LOD; and at average 
background +10 standard deviations for LLOQ.

= +
−

+ ( )
OD MaxOD MinOD MaxOD

1 (1)

value
Concentration CurveSlope

Inflectionpoint
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